Homework 1

CS 329T: Trustworthy Machine Learning Spring 2021

Due: April 9, 11:59 PM PST
Late Due Date: April 11, 11:59 PM PST.

Academic Integrity Policy

This is an individual homework. Discussions are encouraged but you should write down your own code and
answers. No collaboration on code development is allowed. We refer to Stanford Honor Code.

Late Day Policy

You will have 5 late days to use during the whole course, but no more than 2 late days can be used for a
single homework.

Written Exercises

This homework contains some written exercises. We will not accept hard-copies and do not hand-write your
answers. Latex (Overleaf: https://www.overleaf.com) and Markdown are two recommended languages to
generate the clean layout but you are free to use other software. You will need to submit the written part to
Homework1-PDF on Gradescope, separately from you code submission. You can use the KTEXtemplate
provided to fill in the answers. Mention your name and SUNet Id at the top of the pdf.

Coding Exercises

You will be doing the coding part of the homwework in a jupyter notebook solutions.ipynb, provided as
part of the zip folder. We recommend using Google Colab since one of the exercises needs a GPU, which
is available for free via Colab. To open the notebook in Colab, go to http://colab.research.google.
com/, and upload the notebook using File — Upload Notebook. Submit the completed solutions.ipynb
as a jupyter notebook to Homeworkl-Code on Gradescope. Make sure that the file is called
solutions.ipynb or else the autograder will fail.

https://communitystandards.stanford.edu/policies-and-guidance/honor-code
https://www.overleaf.com
http://colab.research.google.com/
http://colab.research.google.com/

Contents

1 Logistic Regression

1.1 Hand-made SGD e

2 Applications with Linear Models

2.1 Explanations e e e e e e e e
2.2 Model stealing o e e e
2.3 Adversarial attacks L e

3 Intensive training using GPU

1 Logistic Regression

For this homework you will need to review the slides and background reading on logistic regression, softmax,
cross-entropy loss, and gradient descent.

Logistic regression is a probabilistic, linear classifier defined by

a weight matrix W
e a bias vector b

. de T
scoring function: given input instance x, the score for class j is s; & W; x + by,

softmax normalization: given scores s = (s1,---,8,), the class probabilities over n classes, denoted y’,

. of 1
are the vector y’ &f softmax(s) &<f Son exp(s)

Putting all this together, the probability of class j given input x is:
T
exp (Wj X+ bj>

>k €XP (ng + bk)

P(y' = jlx,W,b) =

In the probabilistic notation, we use 3’ to refer to the class instead of one-hot vector encoding of class or
class probabilities. Prediction is done by taking the class of highest probability:

Yprea < argmax, P(y' = i|x, W, b)

For each input vector x and one-hot-encoded ground truth vector y in dataset X, Y, the cross-entropy loss
is

L(x,y;W,b) ' — 3 "y logy)

J
=~y logy’

where - refers to dot product.

In this homework, you will not be processing each instance at a time but instead handle a subset ("batch")
of the training dataset. Let X be the input matrix consisting of all the images in one training batch. X;
is the i-th image represented by the i-th column. Let Y be the ground truth matrix one-hot-encoded and
Y’ be the estimated probability matrix. Let N be the batch size. For one batch of 100 images of size 28%28
in 10 classes, the dimensions of X and Y are (784,100) and (10, 100), respectively. The loss function for a
batch is thus:

1
L(X,Y; W,b) & —— > Y- logY;
1
=~ Z ZYM‘ log Y ;
g

Now we have the relationship between L and W ,b, by using the chain rule, we can derive the gradient %
and g—%. Most deep learning software calculates the gradients automatically for you. For the numpy version
of the exercises in this homework, you will need to derive it by yourself. After deriving the gradient values,
we can perform stochastic gradient descent to find the optimal W and b.

1.1 Hand-made SGD

In some highly-specialized settings, automated tools may be unable to compute the gradient of your loss
function. In these cases you would need to further lower your level of abstraction to implement backpropagation.
The coding exercises call for a hand-made implementation of SGD for logistic regression. To help you get
started, lets derive the gradients you will need to employ in the procedure which you will then hard-code
into your code.

Written Exercise 1. Derivation

Derive the gradient of loss in terms of W and b: 59—11,;[, and %. Show your work and make sure the dimensions
of your vectors are consistent with the ones in the problem description.

Coding Exercise 2. Complete the methods for logistic regression using scikit-learn, keras, and numpy in
solutions. ipynb. Your solution to the derivation exercise should be helpful in your numpy implementation.
Note: The formulations for X and Y are flipped in the notebook. X is of size (N, 784) and Y
is of size (N, 10), where N is the batch size.

2 Applications with Linear Models

The simplicity and definition of linear models are convenient for a variety of reasons: methods which we will
cover later in the course are trivial when applied to linear models. In the next set of exercises, you will cover
some of those applications.

2.1 Explanations

A form of explanation for a prediction of a model is the attribution which assigns to each input a real value
representing how important that input was to a prediction. Given a model f : X" — R, the attribution
for f(x) = y is a real vector/matrix of the same shape as x. Not just any real vector would do, however.
Generally we would like to interpret positive values as indicating input dimensions that contributed to the
outcome whereas negative values as indicating to diminishing the outcome. Further, larger magnitude values
should indicate greater importance.

Another property that is sought for attributions is completeness: Given an input x and a baseline input
x’, an attribution a € R™ for f(x) = y (for example, probability of a certain class in logistic regression)
is complete with respect to baseline x’ iff a ® (x —x’) &f 3" a;(x; — x;) = f(x) — f(x’). That is, the
attribution is a complete account of the difference in outcomes between x and the baseline x’.

In general it may be impossible to define an attribution which is complete for multiple baselines. For linear
models, however, this is not a problem.

Written Exercise 3. Given a pre-softmazx logistic regression model f : x +— (WT:L'—i— b), an input x and,

class index ¢, define an attribution a for f(x). =y that is complete for all baselines.

Coding Exercise 4. Complete the methods attribution and ezplain in Part 2 of solution. ipynbd that
produces attributions and explanations for pre-softmax logistic model predictions. An explanation is the
element-wise product of an input & and the attribution a for a given prediction. The attribution used should
be the complete one from the prior ezercise.

2.2 Model stealing

Machine learning as a service is a means of monetizing machine-learnt models. In MLaaS, users pay to
access a model’s predictions without getting access to the model itself (i.e. the architecture and parameters
that define it). However, it may be possible to recover a model using its predictions or perform the model
stealing attack.

Coding Exercise 5. Implement a model stealing attack in Part 2 of solutions. ipynb by completing the
invert method. The method is given functional access to the pre-softmax score of a logistic regression
and should output the model with parameters identical to the one model implementing the given functional
interface.

Written Exercise 6. Is it possible to implement the attack in the prior exercise given access to post-softmax
probabilities? If no, how would you adjust the exercise to make it possible while still being able to call it a
"model stealing” attack?

2.3 Adversarial attacks

Deep vision networks are susceptible to adversarial attacks: inputs that are visually indistinguishable from
benign images that nonetheless fool a model into making a wrong prediction. In the context of this homework,
given a model f, an input image x, and target class ¢, an adversarial image x’ is one which does not differ
from original x but which has f(x’). > max; f(x’);.

Coding Exercise 7. Complete the attack method in Part 2 of solution. ipynb to implement an adversarial
attack. There are many ways of doing this. We only ask that your solution is not trivial in that it attempts
to limit in some way the difference between the given image and the adversarial image. The L, metrics in
test_attack may be useful to gauge progress towards this goal.

Written Exercise 8. Noted above, we can use L.(x — x’), for various bases *, to measure how close the
adversarial example is to the original. Pick a base from % € 0,1,2,00 and describe a pair of images which
are different according to the L, but are actually close when it comes to human perception (i.e. they are
close to indistinguishable).

3 Intensive training using GPU

Real-world deep models are typically trained over large datasets and feature millions of parameters. Training
them or even performing forward passes is computationally intensive. In this exercise we ask you to train a
model using a GPU, achieving a significant speedup over using your general CPU hardware. For Colab, you
can do this by going to Runtime— Change Runtime Type— GPU.

Coding Exercise 9. Complete train_cifar_model to train a model for classifying CIFAR images. CIFAR
images are slightly larger than MNIST and are of a more difficult domain.

Your solution should be able to complete training under the given time constraints and achieve the given test
accuracy results as specified in test_cifar_model. The CIFAR dataset used in this test is not flattened as
was in the case for MNIST which makes it immediately suitable for models with convolutional layers.

Not using the GPU for this exercise is not expected to achieve this goal.

References

[1] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen, and Klaus-
Robert Mueller. How to explain individual classification decisions, 2009.

2]

3]

4]

[5]

16]
7]

18]

A. Datta, S. Sen, and Y. Zick. Algorithmic transparency via quantitative input influence: Theory and
experiments with learning systems. In 2016 IEEE Symposium on Security and Privacy (SP), pages
598-617, 2016. doi: 10.1109/SP.2016.42.

Klas Leino, Linyi Li, Shayak Sen, Anupam Datta, and Matt Fredrikson. Influence-directed explanations
for deep convolutional networks. arXiv preprint arXiv:1802.03788, 2018.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 4765-4774. Curran Associates, Inc., 2017. URL http:
//papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 1135-1144,
2016.

Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation, 2020.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. arXiv
preprint arXiw:1703.01365, 2017.

Zifan Wang, PiotrPiotr Mardziel, Anupam Datta, and Matt Fredrikson. Interpreting interpretations:
Organizing attribution methods by criteria, 2020.

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

	Logistic Regression
	Hand-made SGD

	Applications with Linear Models
	Explanations
	Model stealing
	Adversarial attacks

	Intensive training using GPU

