Homework 2

CS 329T: Trustworthy Machine Learning Spring 2021

Due: April 23, 11:59 PM PST
Late Due Date: April 25, 11:59 PM PST.

Academic Integrity Policy

This is an individual homework. Discussions are encouraged but you should write down your own code and
answers. No collaboration on code development is allowed. We refer to Stanford Honor Code.

Late Day Policy

You will have 5 late days to use during the whole course, but no more than 2 late days can be used for a
single homework.

Written Exercises

This homework contains some written exercises. We will not accept hard-copies and do not hand-write your
answers. Latex (Overleaf: https://www.overleaf.com) and Markdown are two recommended languages to
generate the clean layout but you are free to use other software. You will need to submit the written part to
Homework2-PDF on Gradescope, separately from you code submission. You can use the KTEXtemplate
provided to fill in the answers. Mention your name and SUNet Id at the top of the pdf.

Coding Exercises

You will be doing the coding part of the homwework in a jupyter notebook hw2_solutions.ipynb, provided
as part of the zip folder. We recommend using Google Colab since one of the exercises needs a GPU, which is
available for free via Colab. To open the notebook in Colab, go to http://colab.research.google.com/,
and upload the notebook using File — Upload Notebook. Submit the completed hw2_solutions.ipynb
as a jupyter notebook to Homework2-Code on Gradescope. Make sure that the file is called
hw2_solutions.ipynb or else the autograder will fail.



https://communitystandards.stanford.edu/policies-and-guidance/honor-code
https://www.overleaf.com
http://colab.research.google.com/
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Part 1

Explainability for Traditional ML Models

1 Model-agnostic explanations

We first focus on explanation frameworks that attempt to explain decisions of a black-box model f which
operates on a D-dimensional input vector x = (z1,%2,...,Zp).

We will specifically discuss ways to establish local interpretability, or understanding why a decision is made
for a single instance x. In order to do so, we construct a surrogate model g which approximates the behavior
of f in a region around x. More concretely, we seek to optimize a function L(f,g,x) which measures the
closeness of the functions f and ¢ in the neighborhood of x, subject to strong constraints on g to ensure its
interpretability — constraining g to be a linear model is the most natural way to ensure that a human can
fully understand its behavior.

1.1 Local Surrogate Models (LIME)

LIME [5] proposes the construction of an interpretation by directly learning a linear model that mimics f
in the neighborhood of a point of interest x. A LIME model takes the following steps:

e Perturb x to generate a set of training points X in the neighborhood of x.
e (Call the black-box model f on each point in X to obtain predictions Y.
e Fit a linear model g to X, Y

e Report the coefficients of g, which show how changing each feature value would influence the prediction
made by f.

A key choice in the implementation of a LIME model is determining how to perturb the data in a reasonable
manner. Strategies to do so include:

1. Adding multidimensional Gaussian noise to a data point

2. Adding noise to certain dimensions of a data point, while leaving others fixed in accordance with some
prior about the data — for example, we may expect a certain value is constant across the population
of interest

3. For tabular or categorical data, it is unclear if a perturbed data point will even belong to the support
of the data distribution, making the predictions of f meaningless. In such cases, we can instead select a
weighted combination of other actual training instances, with weights chosen appropriately to increase
the influence of points near x. Note that even in this scenario, the definition of near is somewhat
qualitative.

Written Exercise 1. [4 points] Consider each of the following domains of data, and briefly discuss how
you would perturb an instance of each data type:

1. Real-valued data in R

2. Images of human faces



3. Sentences of English natural language text

Coding Exercise 2. [8 points| Consider a LIME algorithm where we define the neighborhood of a point x
as a weighting of all other data points in the dataset; specifically, with the weight of another point x’ equal
to e~le—a'1*/d for some parameter d (this is similar to the exponential smoothing kernel used in the official
implementation of LIME for tabular data).

Using the code in hw2_solutions. ipynb, develop interpretations for the univariate function f at x = 0
by weighting all other data points using the given kernel with varying values of d, and then fitting a linear
regression to these labelled points. You should do this by tmplementing the weighted_neighborhood_LIME
method within the notebook.

The coefficient of the linear model should reveal if the feature x has a positive, negative, or neutral impact on
the prediction made by f. What impact is shown when using a value of d =172 What if d = 10 or d = 1007

Written Exercise 3. [2 points| Suppose that feature importances given by LIMFE for a large, tabular dataset
show that a small set of feature are extremely important while the rest have equally low importances. How
would you force LIME to isolate only features with high importance?

1.2 The Shapley Value

SHAP [4] and QII [2] are other ways to provide local interpretations of a black box model f in the
neighborhood of a point x with a linear surrogate model. Unlike LIME, these methods choose the coefficients
of this model not through regression, but in order to satisfy certain normative axioms for interpretability.

SHAP approximately decomposes the prediction of the model at x as
g(a) = ¢o + Z Pjaj,
i

where the sum is over all features and each a; is a binary variable indicating if feature a; is used in make the
prediction. In lecture, we outlined the axioms that Shapley values satisfy — these are exactly the normative
axioms that methods such as SHAP and QII satisfy as well.

To formalize this notion, let S represent a set of features, \S all features not in S, and f(xs, X\g) a random
variable which represents the output of the black-box model f when given a feature vector which is identical
to x for each feature in S and drawn randomly otherwise.

Then, the value of a certain feature set can be defined as

vre(S) = Ex g xs[f(2s, X\s)],

the expected value of the model’s output when the features in S are fixed to their values at x and other
features vary according to the conditional data distribution. The contribution of a feature 4 is then given by
the Shapely value associated with v¢ s,

1 .
gi= m(vm(su{l})—vm(s)%

SC[N] 15|

Thus, we measure the impact of using feature ¢ in the model at point x, averaged across all possible choices
of other features to also use as model inputs.

Written Exercise 4. [8 points| Consider a model f(x) = ], x; which returns the product of each component
of its real vector-valued inputs x € R%.  Assuming that across all of the data each x; is independently
distributed according to a standard normal distribution, calculate in closed form the SHAP scores for the
features corresponding to each x; at an arbitrary point x € RY. Comment on whether your answer matches
ntuition.



In the previous question, you may find that SHAP does not provide a very intuitive answer for multiplicative
models. Luckily, most black box models like Neural Networks instead rely on a combination of additive
functions and point nonlinearities.

Written Exercise 5. [3 points| In practice, it is not easy to sample from the conditional distributions
X\s|Xs of some arbitrary subset of features given values for the remaining ones. Another approach is to
instead draw from the marginal distribution for X\ g, disregarding the information given by Xg. This is called
the interventional approach, and is often much more tractable and performant in practice.

Discuss some potential drawbacks you may see in the interventions method. In particular, comment on issues
that may arise when f is called on inputs that may lie outside the support of the overall joint distribution of
the data.

Written Exercise 6. |5 points| In this exercise, we will analyze how local explanations via Shapley values
can be extrapolated to give more global insight about a model’s performance. Within the SHAP section of
hw2_solutions. ipyndb, use the Boston housing prices dataset and the provided code to train an zgboost
model on this dataset. Then use the SHAP package to generate Shapley value estimations for each data point.
For each feature, create a Shapley dependence plot: on the z-axis, plot feature value, and on the y-axis, plot
the corresponding Shapley value.

Isolate 2-3 features with interesting trends (monotonicity, linearity, jumpiness, etc.). Paste your plots for
these features below and comment on what makes them particularly interesting. You may want to refer to the
Boston housing dataset documentation to understand each feature: https: //scikit-learn. org/stable/
datasets/ toy_ dataset. html# boston-dataset

2 Model-specific explanations

In certain cases, more insight about the particular model class can lead to faster, more accurate, or more
interpretable explanations. We explore this here.

2.1 TreeSHAP

TreeSHAP is a variant of SHAP for tree-based models such as decision trees and random forests. TreeSHAP
uses the condition distribution in defining its value function, i.e. Ex, ¢xs(f(2)[zs).

Written Exercise 7. [4 points| Consider a feature that has no influence on a model’s prediction. Is it
possible that it is given non-zero influence with TreeSHAP? Describe why or why not this is the case.

Part II

Attribution in Vision Models

In this section, you will use the trulens library to implement various gradient-based attribution methods
for vision-based deep neural networks. In particular, we will be using the VGG16 model and the ImageNet
dataset as examples.

Before starting this part, we recommend familiarizing yourself with the Trulens library here: https://
truera.github.io/trulens/.


https://scikit-learn.org/stable/datasets/toy_dataset.html#boston-dataset
https://scikit-learn.org/stable/datasets/toy_dataset.html#boston-dataset
https://truera.github.io/trulens/
https://truera.github.io/trulens/

3 Gradient-Based Attribution Methods

3.1 Saliency Map

Saliency Maps [1] compute the local gradient of a class of interest w.r.t an input to find the attribution
scores. Moreover, current work has found that the product of input x grad produces clearer visualization
result. In the homework, we use the following definition for Saliency Map:

Definition 1 (Saliency Map). Consider a model y = f(x) that takes an input x € R¢ and outputs y, a
distribution of scores for each class. We denote the y. = f.(x) as the scores for the class c. The Saliency
Map S.(x) for class c is defined as

SC(QT) =0 mec(l’) (1)

where @ denotes the element-wise multiplication.

Coding Exercise 8. [6 points] Implement visualize_saliency_map within the Homework 2 notebook
using the trulens library. For the provided image of the weasel in the notebook, generate saliency maps for
the top five predicted classes according to the loaded VGG16 ImageNet model and paste them below. Use the
MaskVisualizer class within trulens to help you visualize the attribution.

Written Exercise 9. |2 points| Discuss and justify why we may want to use the penultimate layer of our
predictive model f when calculating a saliency map, instead of the final outputs which are normalized with
softmaz.

Written Exercise 10. [2 points] What would be a possible drawback of multiplying the input with the
gradient?

3.2 Integrated Gradient
Integrated Gradient [6] aims to solve the vanishing gradient problem in Saliency Map, while it satisfies several
desirable axioms.

Definition 2 (Integrated Gradient). Consider a model y = f(x) that takes an input x € R and outputs v,
a distribution of scores for each class. We denote the y. = f.(x) as the scores for the class ¢ and x}, as the
baseline input. The Integrated Gradient IG.(x,xp) for class ¢ is defined as

[Gu(z, ) = (z — 28) © /0 VoLl + Ha — 2))dt @)

where © denotes the element-wise multiplication. In the implementation, we use the following equation to
approximate Eq. 2.

1 & i
1Ge(x,mp) = (z — ) © szmfc (war (w—:cb)N) (3)

where N is the number of steps used for the approximation.

Coding Exercise 11. [6 points] Implement visualize_integrated_gradients within the Homework
2 notebook using the trulens library. For the provided image of the weasel in the notebook, generate
integrated gradient visualizations for the top predicted class (should be weasel). Compare and contrast
how the attribution map changes for the following choice of baselines:

e An all-black image

o An all-white image



o An image with random noise

as well as how it differs from the vanilla gradients (saliency map) implementation.
Written Exercise 12. [3 points|] Ezplain the completeness axiom which Integrated Gradient satisfies.

Written Exercise 13. [5 points] Given a model y = min(2x1+3x2,1) and a baseline x1 = xo = 0, compute
the integrated gradient for point x1 = 2,20 = 1.

3.3 Saliency in Linear Models

Given linear model for d-dimensional inputs defined by the C-class score function f(z) & Wax+b, analytically
derive the attribution of score f.(z) in terms of vectors x, b and matrix W according to:

Written Exercise 14. |2 points| Saliency Map method.

Written Exercise 15. [2 points] Integrated Gradients method with baseline xy = 0.

Also:

Written Exercise 16. [2 points| Is it useful to ask for the same according to the Influence Directed
Ezxplanations method as described by Leino et al. [3] ?

3.4 Influence-Directed Explanations

Influence-Directed Explanation [3] introduces the concept of distributional influence in explaining the internal
behavior of neural networks.

Definition 3 (Distribution of Influence). Consider a feed-forward model y = f(x) that takes an input x € R?
and outputs y, a distribution of scores for each class. We denote the y. = f.(x) as the scores for the class
c. Given a user-defined layer | that separates the model into the internal output of layer | as h'(z) and the
rest part as g'(h'(x)). The distribution of influence I at layer | is defined as

dfe
7 = / / l(m)dm (4)
reX oh (J?)
where X denotes the distribution of input. In the implementation, we use the following approximation as
well:

N TAC,
Ié - N = ahl(l‘l) (5)

where N is the size of dataset sampled from the real-world distribution.

By finding the neuron at layer [ with highest influence score, we locate the expert neuron responsible for the
classification towards class c. To visualize the input feature that has high contribution towards the expert
neuron, we compute the gradient of the output of expert neuron w.r.t the input. Formally,

Definition 4 (Expert Neuron Attribution). Consider a feed-forward model y = f(x) that takes an input
r € R and outputs y. Given a user-defined layer | with the distribution of influence T. towards class c.
Denote TL[i] and hi(z) as the influence score and the output for the i-th neuron at layer I. The Expert
Neuron Attribution score A(x) is defined as

Alx) =2 © Vhi (z) i* = argmaxZ.[i] (6)



Coding Exercise 17. [8 points| Use trulens to implement the get_internal_influences function within
the homework notebook for an arbitrary quantity of interest, distribution of interest, and layer of a model.

Written Exercise 18. [3 points| Report the indices of the post-RELU expert neuron at fcl1 layer w.r.t. the
weasel class, (A) when the distribution of interest is the single weasel image and (B) when the distribution
of interest is a linear interpolation between a zero-vector baseline (a black image) and the given point,
respectively.

Discuss what you observe: do the experts correspond to some human-understandable concept? Do they
differ between the two Dols? Feel free to visualize the expert on more than a single image to derive some
conclusions.

Written Exercise 19. |2 points| Repeat the same exercise above but for the class polecat.

Written Exercise 20. [5 points| For the two classes weasel and polecat, report and visualize the expert
neuron (in the same layer) that distinguishes the first class from the second. You will need to use a quantity
of interest that compares scores of the two classes. For the distribution of interest, use the same point-wise
and linear interpolation Dols as in previous exercises. Discuss what you observe: do the experts correspond
to some human-understandable concept? Did the differences in distribution of interest have any impact?

4 Attribution Method Evaluation

Evaluation of attribution methods remains an open space for the current researchers. Several metrics are
discussed but a unified framework is still missing in this area. In this section you are going to implement
metrics to evaluate the performance of attribution methods and apply them to the three methods you have
implemented in this homework: Saliency Map, Integrated Gradient and Influence-Directed Explanations.

The dataset you are going to use is a small portion of ImageNet data and you can download by: wget
https://hw2dataset.s3.amazonaws.com/ImageNet_1K.npy

4.1 Visual Comparisons

Written Exercise 21. [6 points| Select a subset of the provided ImageNet images, using both images that
are correctly and incorrectly classified. Compare and contrast the attributions produced by the three methods.
Ezxample points of comparison may include, but should not be limited to:

e s one of the attribution methods consistently more convincing to you as a human who presumably can
recognize the objects pictured?

e How do the methods fare in relation to pointing out elements of an image that should definitely have
no relationship with the pictured object?

o Are some methods easier to interpret than others? What characteristics make an attribution easier to
interpret?

e Is visual comparison a good approach to distinguish attribution methods? why or why not?

e Do you find that the baseline choice affects the attribution method greatly? Why do you think that is
and what would be the most appropriate baseline?



4.2 Average Drop %

Unfortunately visual evaluations are subjective and objective methods are hard to come by. In this homework
we will explore two objective methods. The first is Average % Drop. This method and the one that follows
operates on attributions that do not distinguish between the color channels. To create a pixel attribution
from the full attribution you have worked with so far by setting setting the attribution of a
pixel as the average attribution of its three channels.

Definition 5 (Average Drop %). Given a (pizel) attribution map A for an input x and the model f(z), let
M4 (z) denote a mask function that keeps only the pizels in x whose pizel attribution score in A is positive
while setting all other pizels to 0. The Average Drop % score AD is then defined for a set of instances D as:

. 1 max [ fe, (x;) — fe, (Ma,(x;)),0]
AD(D) 4 100% X — : : : 7
) P For ) g
where fe,(z;) is the pre-softmaz output score for class ¢ for instance x; and ¢; &f argmax(f(xz;)).

Written Exercise 22. [6 points] Implement the functions under the Average Drop section of the homework
notebook to compute the average drop score for the provided images of the flamingo for vanilla Saliency
Maps and Integrated Gradients (with an all-zero baseline). Report these two values.

Written Exercise 23. [4 points| Based on the definition of Average Drop %, what does this metric evaluate

about an attribution map? Does a higher Average Drop % indicate an attribution map is better than another

and in what sense? Discuss whether Average Drop % is a reasonable objective measure of attribution goodness.
Bonus points available for especially thoughtful discussion.

4.3 Necessity Ordering

Necessity Ordering Score [7] is another objective measure of an attribution’s fidelity. It applies to individual
images/attributions as opposed to entire datasets as was the case for average drop:

Definition 6 (Necessity Ordering Score). Given a (pizel) attribution map A of an input x and a model
f(x), denote ma(x) as a list of pizels of x ordered by their positive attribution score in A, biggest first.
Denote R(i,m4) as the masking of x that replaces all the pizels up to the i-th according to ordering wa by 0.
Everything else about x is left unchanged. The Necessity Ordering Score for the attribution map No(x, A) is
defined as

N, A) 2 2 S e [ fu(R(i, ma)) — fu(0),0 (8)

where N is the number of features, f.(-) denotes the pre-softmaz output score for class ¢, and 0 is an all-zero
"blank" input.

Written Exercise 24. [4 points] Based on the definition of Necessity Ordering, what does this metric
evaluate about an attribution map? Does a higher Necessity Ordering indicate an attribution map is better
than another and in what sense? Discuss whether Necessity Ordering is a reasonable objective measure of
attribution goodness.
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