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Course Logistics
• Lectures/"Fireside chats": Tue 2:30pm-3:50pm PST​
• Labs (attendance required in your assigned session):

• Session 1/2: Thu 2:30pm-3:30pm PST
• Session 3/4: TBD (based on your input)

• Web page: http://web.stanford.edu/class/cs329t/

• Gradescope (assignment submissions)​
• Canvas (grades)
• Piazza (announcements, for all other communication)

• Stanford Honor Code​

THIS WEEK: Thurs 2:30 for all

http://web.stanford.edu/class/cs329t/
https://communitystandards.stanford.edu/policies-and-guidance/honor-code


Course staff

• Instructor: Anupam Datta
• Email: danupam@stanford.edu

• Office hours: TBD

• Instructor: John C. Mitchell
• Email: jcm@cs.stanford.edu

• Office hours: Wed 11-12 noon (starting April 7)

• Office hours available remotely:
• Zoom meeting links on website



Course staff
• TA: Soham Gadgil

• Email: sgadgil@stanford.edu

• Office hours: TBD

• TA: Shreya Singh
• Email: ssingh16@stanford.edu

• Office hours: TBD

• Office hours available remotely:
• Zoom meeting links on website



Course staff
• Contributing instructor: Divya Gopinath

• Email:

• Office hours:

• Contributing instructor: Piotr (Peter) Mardziel
• Email: piotrm@gmail.com

• Office hours:

• Office hours available remotely:
• Zoom meeting links on website



Today

• Goals

• Modules
• Background

• Explainability

• Fairness

• Privacy

• Robustness

• Classwork
• One homework for each module

• Logistics covered further in lab 
Thursday 2:30
• Course Format

• Prerequisites

• Grading

• Policies



Machine Learning Systems are Ubiquitous



Continuing successes of deep learning
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ML Models over Image Data 



ML Models for Natural Language Processing 



Significant Barrier to Adoption of ML

Assessing and improving trustworthiness of ML systems

• National Academies Workshop (March 2021)
• Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government (December 2020)
• EU Ethics Guidelines for Trustworthy Artificial Intelligence (December 2018)
• FEAT Principles (November 2018)
• ...

https://www.nationalacademies.org/event/03-03-2021/assessing-and-improving-ai-trustworthiness-current-contexts-potential-paths
https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-artificial-intelligence-in-the-federal-government
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://www.mas.gov.sg/~/media/MAS/News%20and%20Publications/Monographs%20and%20Information%20Papers/FEAT%20Principles%20Final.pdf


Attributes of Trustworthiness

• Explainability

• Fairness

• Privacy

• Robustness

• Accuracy

• Auditability

• Reproducibility

• ...



Course objective

Understand how to assess and improve trustworthiness 
of ML Models



Course modules

Pre-req/review: Fundamentals of machine learning & deep learning

Elements of Trustworthy Machine Learning

1. Explainability

2. Fairness

3. Privacy

4. Robustness

Spanning traditional 
Statistical Machine 

Learning and
Deep Learning



Course module 0: Machine Learning Review



Homework 1

• Scikit-learn

• Numpy
• Keras

Practice using basic tools:

• Logistic regression

• Deep neural network models

By implementing digit classifiers using:

• Explanations

• Adversarial examples
• Model stealing

Sample application exercises with logistic regression:



Course module 1: Explainability

Explanations enable understanding and debugging of ML models

• How can we explain individual predictions from ML models?

• How can we explain an ML model's behavior at a global level?

• How do we evaluate explanation methods in a principled manner?

• How can explanations enable testing, debugging, and improvement of ML 
models?



Explanations: Structured Data, Statistical ML Models

Credit
Classifier

User data Decisions

?

Why was Joe denied credit by the tree ensemble model?



Explanations: Unstructured Data, Deep Neural Networks

DR Classifier Diabetic 
retinopathy 
Stage 5

?

Why this diagnosis from the GoogleNet neural network?



Homework 2

• Model-agnostic: Shapley Values, local approximations (QII, LIME, 
SHAP)

• Model-specific optimizations: TreeSHAP

Explanations for traditional models

• Saliency Maps

• Integrated Gradients
• Influence-directed Explanations

Explanations for deep models

What will I be doing?
• Understand, reason about, and extend the theoretical principles backing explanation frameworks like 

QII, LIME, SHAP, Integrated Gradients, etc.
• Implement a subset of these methods yourself (LIME, some deep explanations)
• Play around with open-source packages that enable explanations (SHAP, Trulens)



Course module 2: Fairness

Unfair bias measurement and mitigation



Fairness Matters

Facial Recognition

Online Advertising

Natural Language 
Processing



Homework 3

• Demographic fairness in classification models (structured 
data, deep neural networks)

• Biased word embeddings (text data, word2vec)

Fairness metrics

• Adversarial training (deep neural networks)

• Subspace projection (text data, word2vec)

Debiasing



Course module 3: Privacy

ML Models may leak information about their training data subjects

• How do we formalize privacy risks from ML?

• How do we mitigate these privacy risks?



Homework 4

• Membership inference: models that 
remember too much about training 
data (deep networks, image data).

Privacy risks



Course module 4: Robustness

Attacks on classifiers and defenses



Homework 5

• CNN's over image datasets.

Adversarial attacks.

• Defensive distillation, adversarial training

Defenses.



Summary
• Goal

• Understand how to assess and improve trustworthiness of ML Models 

• Modules
• Background
• Explainability
• Fairness
• Privacy
• Robustness

• Classwork
• One homework for each module
• Final project (10% of grade)





Course Structure

• Activities: Offline lectures, "fireside chats", labs

• Weekly:
• Offline/prerecorded lectures

• Prerecorded video

• Fireside chats
• Occasionally guest lectures

• Labs
• Background, software, homework intros, homework help



Prerequisites



Grading

• Homework: 80%
• 5 x 16%

• Final report: 10%

• Class participation: 10%
• Be present and engaged in class and piazza

• Informed questions for guest lecturers



Collaboration policy on homework



Acknowledgment

• Builds on material from
• CMU Spring 2018-2020 18739: Security and Fairness of Deep Learning


