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Course Logistics

Lectures/"Fireside chats": Tue 2:30pm-3:50pm PST
Labs (attendance required in your assigned session):

e Session1/2: Thu 2:30pm-3:30pm PST
* Session 3/4: TBD (based on your input)

THIS WEEK: Thurs 2:30 for all

Web page: http://web.stanford.edu/class/cs329t/

Gradescope (assignment submissions)
Canvas (grades)

Piazza (announcements, for all other communication)

Stanford Honor Code



http://web.stanford.edu/class/cs329t/
https://communitystandards.stanford.edu/policies-and-guidance/honor-code

Course staff

* Instructor: Anupam Datta

* Email: danupam@stanford.edu
e Office hours: TBD

* Instructor:John C. Mitchell
e Email: jcem@cs.stanford.edu
e Office hours: Wed 11-12 noon (starting April 7)

» Office hours available remotely:
* Zoom meeting links on website



Course staff

* TA: Soham Gadgil

* Email: sgadgil@stanford.edu
 Office hours: TBD

* TA: Shreya Singh
* Email: ssinghl6@stanford.edu
e Office hours: TBD

» Office hours available remotely:
 Zoom meeting links on website



Course staff

* Contributing instructor: Divya Gopinath
* Email:
 Office hours:

e Contributing instructor: Piotr (Peter) Mardziel
* Email: piotrm@gmail.com
» Office hours:

» Office hours available remotely:
 Zoom meeting links on website



Today

e Goals * Logistics covered further in lab
« Modules Thursday 2:30

* Course Format

* Prerequisites

e Grading

 Policies

* Background
e Explainability
* Fairness

* Privacy

* Robustness

e Classwork
e One homework for each module



Machine Learning Systems are Ubiquitous
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Continuing successes of deep learning
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ML Models over Structured Data
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ML Models over Image Data
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ML Models for Natural Language Processing

Ise

L

Encoder

hE?

LIgcouiar

hat?#

o)

~, Few additional mention pair features
My \ (distance, exact string match)

Score of a pair of mentions:

sister“‘u‘ 0 20 o :
has |
a RN 02%2' | Score of adog
do 1.2/10.110.4{1.2 — being an
g 7 0.111.211.4.2.1 - antecedent
and Je' || of him
She ‘,\/{“ (word vecg;nfzj:iet?::'\z;faamres,-.] | )
loves o.3lo.2|3.4|1.2 ey seovason
him —10.111.23.4 0.2/ Score of a single mention
Very 77';7 0.4 1.2 3.2
much/

1.3
Score of him
having no

antecedent



Significant Barrier to Adoption of ML

Assessing and improving trustworthiness of ML systems

* National Academies Workshop (March 2021)
* Promoting the Use of Trustworthy Artificial Intelligencein the Federal Government (December 2020)

 EU Ethics Guidelines for Trustworthy Artificial Intelligence (December 2018)
* FEAT Principles (November 2018)



https://www.nationalacademies.org/event/03-03-2021/assessing-and-improving-ai-trustworthiness-current-contexts-potential-paths
https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-artificial-intelligence-in-the-federal-government
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://www.mas.gov.sg/~/media/MAS/News%20and%20Publications/Monographs%20and%20Information%20Papers/FEAT%20Principles%20Final.pdf

Attributes of Trustworthiness

* Explainability

* Fairness

* Privacy

* Robustness

* Accuracy

* Auditability

* Reproducibility



Course objective

Understand how to assess and improve trustworthiness
of ML Models



Course modules

Pre-req/review: Fundamentals of machine learning & deep learning

Elements of Trustworthy Machine Learning

Explainability
. Spanning traditional
2. Fairness Statistical Machine
3. Privacy Learning and

Deep Learning

Robustness

B



Course module O: Machine Learning Review

input layer

hidden layer 1 hidden layer 2



Homework 1
— T

e Scikit-learn
e Numpy
e Keras

By implementing digit classifiers using:

e Logistic regression
¢ Deep neural network models

Sample application exercises with logistic regression:

e Explanations
e Adversarial examples
e Model stealing




Course module 1: Explainability

Explanations enable understanding and debugging of ML models

How can we explain individual predictions from ML models?
How can we explain an ML model's behavior at a global level?
How do we evaluate explanation methods in a principled manner?

How can explanations enable testing, debugging, and improvement of ML
models?



Explanations: Structured Data, Statistical ML Models
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Explanations: Unstructured Data, Deep Neural Networks
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Homework 2

ey Explanationsfor traditional models

e Model-agnostic:Shapley Values, local approximations (Qll, LIME,
SHAP)

%
e Model-specific optimizations: TreeSHAP !“'l 1F

| sHap - TensorFlow
mmm EXxplanationsfor deep models
e Saliency Maps
e Integrated Gradients m TruLens

e Influence-directed Explanations

What will | be doing?

* Understand, reason about, and extend the theoretical principles backing explanation frameworks like
Qll, LIME, SHAP, Integrated Gradients, etc.

* Implementa subset of these methods yourself (LIME, some deep explanations)

* Playaround with open-source packages that enable explanations (SHAP, Trulens)



Course module 2: Fairness

Unfair bias measurement and mitigation



Fairness Matters
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Homework 3

e airness metrics

e Demographic fairness in classification models (structured
data, deep neural networks)

e Biased word embeddings (text data, word2vec)

.

e Adversarial training (deep neural networks)
e Subspace projection (text data, word2vec)




Course module 3: Privacy

ML Models may leak information about their training data subjects

e How do we formalize privacy risks from ML?
* How do we mitigate these privacy risks?



Homework 4

[

e Membership inference: models that
remember too much about training
data (deep networks, image data).




Course module 4: Robustness

Attacks on classifiers and defenses




Homework 5

Adversarial attacks.

e CNN's over image datasets.

.powoﬂ

57.7% confidence

Defenses.

e Defensive distillation, adversarial training

“gibbon"

90.3% confidence



Summary

* Goal
* Understand how to assess and improve trustworthiness of ML Models

* Modules
* Background
* Explainability
* Fairness
* Privacy
e Robustness

e Classwork
* One homework for each module
* Final project (10% of grade)






Course Structure

o Activities: Offline lectures, "fireside chats", labs
* Weekly:

» Offline/prerecorded lectures
* Prerecorded video

* Fireside chats
e Occasionally guest lectures

e Labs

* Background, software, homework intros, homework help



Prerequisites



Grading

e Homework: 80%
e 5x16%

* Final report: 10%

* Class participation: 10%
* Be present and engaged in class and piazza
* Informed questions for guest lecturers



Collaboration policy on homework



Acknowledgment

* Builds on material from
e CMU Spring 2018-2020 18739: Security and Fairness of Deep Learning



